Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Numerical Investigation of Surface Plasmon Resonance in Lens-Shaped Self-Assembled Nanodroplets of Group III Metals

Identifieur interne : 000820 ( Main/Repository ); précédent : 000819; suivant : 000821

Numerical Investigation of Surface Plasmon Resonance in Lens-Shaped Self-Assembled Nanodroplets of Group III Metals

Auteurs : RBID : Pascal:13-0312788

Descripteurs français

English descriptors

Abstract

Metal droplets are prominent candidates for plasmonic antennas for semiconductor quantum dots (QDs) due to compatibility with molecular beam epitaxy (MBE). They can be produced in a self-assembly process directly in the MBE chamber on substrates with buried QDs, forming vertically aligned QD-droplet pairs and thus opening the way for the synthesis of novel hybrid metal-semiconductor structures. In this paper, we have numerically studied the surface plasmon resonance in lens-shaped droplets consisted of group III metals focusing on the influence of the droplet material and tuning of the resonance position. The discrete dipole approximation method was used for simulations, and typical experimental parameters were considered. Indium was demonstrated to be efficient for plasmonic applications in the near-infrared region. The resonance position redshifts linearly with increasing droplet size and can be tuned in a wide range to match InAs/GaAs QDs emission. Large droplets support multipolar modes with specific polarization and incidence angle dependences that can be used for multichannel selective plasmonic nanoantennas. Nanodroplets of group III metals present efficient and highly tunable plasmonic structures that along with self-assemble formation make them attractive for solid-state nanophonotics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0312788

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Numerical Investigation of Surface Plasmon Resonance in Lens-Shaped Self-Assembled Nanodroplets of Group III Metals</title>
<author>
<name sortKey="Lyamkina, Anna A" uniqKey="Lyamkina A">Anna A. Lyamkina</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>A.V. Rzhanov Institute of Semiconductor Physics SB RAS, Lavrent'eva ave. 13</s1>
<s2>630090 Novosibirsk</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>630090 Novosibirsk</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Russian Quantum Center, Novaya St. 100, Skolkovo</s1>
<s2>143025 Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Moshchenko, Sergey P" uniqKey="Moshchenko S">Sergey P. Moshchenko</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>A.V. Rzhanov Institute of Semiconductor Physics SB RAS, Lavrent'eva ave. 13</s1>
<s2>630090 Novosibirsk</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>630090 Novosibirsk</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0312788</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0312788 INIST</idno>
<idno type="RBID">Pascal:13-0312788</idno>
<idno type="wicri:Area/Main/Corpus">000690</idno>
<idno type="wicri:Area/Main/Repository">000820</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1932-7447</idno>
<title level="j" type="abbreviated">J. phys. chem., C</title>
<title level="j" type="main">Journal of physical chemistry. C</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Angular variation</term>
<term>Antennas</term>
<term>Digital simulation</term>
<term>Dipole approximation</term>
<term>Droplets</term>
<term>Focusing</term>
<term>Gallium arsenides</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Incidence angle</term>
<term>Indium</term>
<term>Indium arsenides</term>
<term>Molecular beam epitaxy</term>
<term>Nanoantenna</term>
<term>Nanoelectronics</term>
<term>Near infrared radiation</term>
<term>Plasmonics</term>
<term>Plasmons</term>
<term>Polarization</term>
<term>Red shift</term>
<term>Self-assembled layers</term>
<term>Self-assembly</term>
<term>Semiconductor quantum dots</term>
<term>Solid state</term>
<term>Spectral line shift</term>
<term>Surface plasmon resonance</term>
<term>Vertical alignment</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Simulation numérique</term>
<term>Résonance plasmon surface</term>
<term>Autoassemblage</term>
<term>Gouttelette</term>
<term>Plasmon</term>
<term>Plasmonique</term>
<term>Antenne</term>
<term>Point quantique semiconducteur</term>
<term>Epitaxie jet moléculaire</term>
<term>Alignement vertical</term>
<term>Semiconducteur III-V</term>
<term>Focalisation</term>
<term>Approximation dipolaire</term>
<term>Indium</term>
<term>Couche autoassemblée</term>
<term>Etat solide</term>
<term>Rayonnement IR proche</term>
<term>Déplacement raie</term>
<term>Déplacement vers le rouge</term>
<term>Arséniure d'indium</term>
<term>Composé III-V</term>
<term>Arséniure de gallium</term>
<term>Polarisation</term>
<term>Angle incidence</term>
<term>Variation angulaire</term>
<term>Nanoélectronique</term>
<term>Substrat métal</term>
<term>8116D</term>
<term>7145G</term>
<term>8440B</term>
<term>8115H</term>
<term>Nanoantenne</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Metal droplets are prominent candidates for plasmonic antennas for semiconductor quantum dots (QDs) due to compatibility with molecular beam epitaxy (MBE). They can be produced in a self-assembly process directly in the MBE chamber on substrates with buried QDs, forming vertically aligned QD-droplet pairs and thus opening the way for the synthesis of novel hybrid metal-semiconductor structures. In this paper, we have numerically studied the surface plasmon resonance in lens-shaped droplets consisted of group III metals focusing on the influence of the droplet material and tuning of the resonance position. The discrete dipole approximation method was used for simulations, and typical experimental parameters were considered. Indium was demonstrated to be efficient for plasmonic applications in the near-infrared region. The resonance position redshifts linearly with increasing droplet size and can be tuned in a wide range to match InAs/GaAs QDs emission. Large droplets support multipolar modes with specific polarization and incidence angle dependences that can be used for multichannel selective plasmonic nanoantennas. Nanodroplets of group III metals present efficient and highly tunable plasmonic structures that along with self-assemble formation make them attractive for solid-state nanophonotics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1932-7447</s0>
</fA01>
<fA03 i2="1">
<s0>J. phys. chem., C</s0>
</fA03>
<fA05>
<s2>117</s2>
</fA05>
<fA06>
<s2>32</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Numerical Investigation of Surface Plasmon Resonance in Lens-Shaped Self-Assembled Nanodroplets of Group III Metals</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LYAMKINA (Anna A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MOSHCHENKO (Sergey P.)</s1>
</fA11>
<fA14 i1="01">
<s1>A.V. Rzhanov Institute of Semiconductor Physics SB RAS, Lavrent'eva ave. 13</s1>
<s2>630090 Novosibirsk</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Russian Quantum Center, Novaya St. 100, Skolkovo</s1>
<s2>143025 Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>16564-16570</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>549C</s2>
<s5>354000501935990320</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>41 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0312788</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physical chemistry. C</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Metal droplets are prominent candidates for plasmonic antennas for semiconductor quantum dots (QDs) due to compatibility with molecular beam epitaxy (MBE). They can be produced in a self-assembly process directly in the MBE chamber on substrates with buried QDs, forming vertically aligned QD-droplet pairs and thus opening the way for the synthesis of novel hybrid metal-semiconductor structures. In this paper, we have numerically studied the surface plasmon resonance in lens-shaped droplets consisted of group III metals focusing on the influence of the droplet material and tuning of the resonance position. The discrete dipole approximation method was used for simulations, and typical experimental parameters were considered. Indium was demonstrated to be efficient for plasmonic applications in the near-infrared region. The resonance position redshifts linearly with increasing droplet size and can be tuned in a wide range to match InAs/GaAs QDs emission. Large droplets support multipolar modes with specific polarization and incidence angle dependences that can be used for multichannel selective plasmonic nanoantennas. Nanodroplets of group III metals present efficient and highly tunable plasmonic structures that along with self-assemble formation make them attractive for solid-state nanophonotics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A16D</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70A45G</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D04B04D</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A15H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Simulation numérique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Digital simulation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Résonance plasmon surface</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Surface plasmon resonance</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Autoassemblage</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Self-assembly</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Gouttelette</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Droplets</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Plasmon</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Plasmons</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Plasmonique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Plasmonics</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Antenne</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Antennas</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Point quantique semiconducteur</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Semiconductor quantum dots</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Alignement vertical</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Vertical alignment</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Alineacíon vertical</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Focalisation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Focusing</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Approximation dipolaire</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Dipole approximation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Couche autoassemblée</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Self-assembled layers</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Etat solide</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Solid state</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Estado sólido</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Rayonnement IR proche</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Near infrared radiation</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Déplacement raie</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Spectral line shift</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Déplacement vers le rouge</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Red shift</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>33</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>34</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Polarisation</s0>
<s5>35</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Polarization</s0>
<s5>35</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Angle incidence</s0>
<s5>36</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Incidence angle</s0>
<s5>36</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Variation angulaire</s0>
<s5>37</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Angular variation</s0>
<s5>37</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Variación angular</s0>
<s5>37</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Nanoélectronique</s0>
<s5>38</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Nanoelectronics</s0>
<s5>38</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Substrat métal</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>8116D</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>7145G</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>8440B</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>8115H</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>Nanoantenne</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="32" i2="3" l="ENG">
<s0>Nanoantenna</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="32" i2="3" l="SPA">
<s0>Nanoantena</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>294</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000820 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000820 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0312788
   |texte=   Numerical Investigation of Surface Plasmon Resonance in Lens-Shaped Self-Assembled Nanodroplets of Group III Metals
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024